If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+10t-12.5=0
a = 1; b = 10; c = -12.5;
Δ = b2-4ac
Δ = 102-4·1·(-12.5)
Δ = 150
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{150}=\sqrt{25*6}=\sqrt{25}*\sqrt{6}=5\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-5\sqrt{6}}{2*1}=\frac{-10-5\sqrt{6}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+5\sqrt{6}}{2*1}=\frac{-10+5\sqrt{6}}{2} $
| 4(x-3)+6x=9x-6 | | 16u-15u=17 | | |-7x+4|=-11x+11 | | 6q-2q-3=9 | | 15-0.5x=30 | | 5(y+5)+y=2(y+2)+2 | | 0.8t^2+8t-10=0 | | 5g+4(-7=3g)=1-g | | x+4-7x=28 | | 4a+(-5a)=12 | | 1/4(x+4x)+12=1/2(2-x)+10 | | 2=7-n | | 5x+8=7x-5 | | 3-3x=-8x-28 | | 3m+14=15-m | | 4x-1+3x+3=13.5 | | r-(-10r)=-11 | | r÷2-(-9)=15 | | 3k+7-8k-5=37 | | 2(3x+5)=28 | | 56=1/2h+13 | | -16-7(2a+3)=23-2a-16 | | -2y-10=9y+23 | | 56=1/2h(10+3) | | -73=2(6n+7)+5(1-7n) | | 6+3x-2=9 | | 2g+7g=81 | | .50x-3=1.66x+4 | | n/4=180 | | 5-3(x+3)=2(3-4x) | | 3x+5=(-2)+25 | | 12x-5x+165=12x65 |